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Group Theory of Spontaneous Symmetry Breaking 
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The connection between the minimality of the Higgs field potential and the 
maximal little groups of its representation obtained by spontaneous symmetry 
breaking is analyzed. It is shown that for several representations the lowest 
minimum of the potential is related to the maximal little group of those rep- 
resentations. Furthermore, a practical necessity criterion is given for the rep- 
resentation of the Higgs field needed for spontaneous symmetry breaking. 

1. I N T R O D U C T I O N  

Since the success o f  G S W  theory (Glashow, 1961; Glashow et al., 1970; 
Salam, Weinberg,  1967) based on spontaneous  symmetry breaking (SSB) 
[Higgs mechanism (Higgs, 1964a,b)] and related GUTs  with mass produc-  
t ion through SSB, there has been a great deal of  effort to unders tand the 
group-theoret ic  aspects o f  SSB and its possibilities for unifying the physical 
interactions by incorporat ing supersymmetry.  

The pioneering work in this direction o f  Michel (1979) and Li (1974) 
was fol lowed by others generalizing and explaining various aspects o f  SSB 
(Ruegg, 1980; Bucella et aL, 1980; Kim, 1982). We give here a brief  review 
of  the SSB mechanism for a group (algebra) G. General ly  for a G-invar iant  
Lagrangian,  SSB is possible when a Higgs field ~ belonging to a representa- 
tion 2 re o f  G acquires a vacuum expectat ion value (vev) (~r~) invariant 
only with respect to a subgroup Gi c G. Three dependent  condit ions must  
be fulfilled in a SSB G ~  Gt: 

I. Invar iance of  re with respect to G1, G~(rG) = re 

lI. Minimizat ion o f  the potential by {~rc). 
III .  Mass generat ion for the gauge bosons related to ( G / G O  by ~rG. 

1Fakultfit ffir Physik, Universitfit Konstanz, D-7750 Konstanz, West Germany. 
2Here we discuss only the single irreducible representation (irrep.) of unitary groups; for the 
cases of the combined irreps see footnote 7. The method can be used immediately for the 
orthogonal groups. 
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Conditions I and III can be fulfilled if G~ is a little group of  re, but II is 
generally (!) fulfilled only if G~ is a maximal little group (m.l.g.) 3 of  r e.  
The quantitative structure of  cro arising from the minimization procedure 
determines the directions of  SSB (the rank distribution of  unbroken groups 
or little groups). 

Given the kind 4 of  representation rc for the Higgs field, without any 
need for minimization of  the potential or detailed knowledge of  the (r 
it is obvious that the remaining gauge group is an element of  the set of  little 
groups of  re. But because of  free parameters in the potential V(q~r~) one 
cannot immediately determine the physical unbroken gauge group. So it is 
o f  interest to find a general criterion for determining a certain subset of  
little groups as the possible domain of  remaining gauge groups. 

2. SINGLET CRITERION 

A singlet criterion 5 based on condition I requires that the decomposit ion 
of  re with respect to G1 must have only one singlet, because the invariance 
I requires at least one singlet of  re with respect to G1 "as a necessary 
condition for SSB. ''6 More than one singlet of  rc with respect to G1 in a 

3In the case of G 1 = SU(n) x SU(m) we define the maximal little groups so that the decomposi- 
tion of the SU(N) representation with respect to them has the smallest number of singlets 
(see footnote 8), i.e., generally one; or equivalently those subgroups with n~ + n 2 = N, where 
n~ and n 2 have to be determined for each kind of representation differently. The criterion 
that "maximal little groups must not contain each other" holds only for the adjoint representa- 
tions, but obeys our criterion, too. In the last time there are some counterexamples to the 
"Michel conjecture," but we do not discuss this here. 

4Vector, adjoint, or tensors, without quantitative vacuum structure. 
Slntroduced in Ghaboussi (1982). For example, to break SU(N)~ SU(2)x  SU(N-2), one 
needs an antisymmetric second-rank tensor, because (in dimension) 

SU( N) c SU(2) x SU( N -  2) 

( N2 ) =(1,1)+(2, N -  2)+" . 

6Because then one can choose the whole of the nonsinglet parts of the decomposition (see 
footnote 7) as equal to zero, to have enough freedom to demonstrate the desired invariance 
within the nonzero part of the singlet. For example, in the case of the adjoint representation 
of $U(5) one has t[! SU(3) v 0 0 

0 v 0 
0 0 [ - 3 V  0 

SU(2) 
3 V 0 0 -~ .j 
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SSB (decomposition) is equivalent to introduction of more than one irrep 
to produce the same SSB; but in this case the representation is no longer 
single. 7 On the other hand, the requirement of only one singlet is equivalent 
to demanding that G~ must be a maximal little group of re. 8 So our singlet 
criterion implies the Michel (1979) conjecture. 

The domain of possible unbroken gauge groups in G ~ G~ is bounded 
to the set of maximal little groups of re; but the determination of the 
physical G1 from this set of groups depends generally on the structure of 
the potential and in particular on the sign of the leading order of the 
potential polynomial. 9 

It is the aim of this paper to clarify the relation between the minimaliz- 
ation of potential by a numerical representation (rn) and the maximality of 
its little groups: (r~) ~ {(re)}, 

[ g((rn)): Vminimum] ~ [ G l ( ( r n )  ) ~-- (rn) , G l c {m.Lg.}<rc>] 

We discuss now the usual case of SSB in gauge theories, N = n l +  n2, 
S U ( N ) - ~  SU(n l )  x SU(n2). 

7For example, 

su(5) ~ s u ( 3 )  • su(2) • u(1) 

(24) 1 = (1, 1 )+ (8 ,  1 ) + ( 3 , 2 ) + ( 1 , 3 ) + ( 3 , 2 )  

S U ( 5 )  -~ SU(2) xSU(2)x U ( 1 ) x  U(1)  

(24)2=(1  , 1 )+  (1, 1 )+ (3 ,  1 )+ (2 ,  1 )+  (2, 1 ) + . .  �9 

and this means 

SU(5)  (247, SU(3)xSU(2)x U(1) (24)3 SU(2)xSU(2)x U ( 1 ) x  U(1)  

Generally the cases with more than one irrep, r e = r~ + r2+-  � 9  are equivalent to the case 
obtained by introducing the r I and r 2 step by step, i.e., 

G rl ~ G 1 r2 ~ G 2 " "7 �9 �9 �9 

See also Slansky (1981). 
SOnly in the one case of  antisymmetric representation may one have more than one singlet 
with respect to the maximal little groups. For example, 

S U ( N ) z S U ( n ) x S U ( m ) ,  n = m = N / 2  

( n N ) = ( 1 ,  l ) +  . . . + ( 1 , 1 ) ,  

9Here we are dealing with potentials with "relatively" fixed parameters, but we discuss the 
general case of  variable parameters later. 
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3. QUALITATIVE ANALYSIS 

We know that the general renormalizable SU(N)- invariant  potential, 
first without a cubic term, with representation (r), 1~ is 

V(q~r) = - a  Tr(r  fl[Tr0p2r)]2 • y Tr(q~4); a,/3, 7)0 (1) 

It is then plausible to state that the magnitude of minima of V(G) depends 
on the extrema of Tr(q~4). In other words, the stable minimum of V(r for 
(+y)  occurs when Tr(~ 4) has its minimum, and for ( - y )  it occurs with 
maximum of Tr(r 

Now the reason why the minimum of V(G) happens in general if the 
little group of (r: r,) is maximal is that the mentioned extremum of Tr(~ 4) 
(related to Vmin) Occurs, as we show later, only for the extrema of 

for (r: r~) if 

n = nl/n2 (2) 

n l +  n2 --= N (3) 

where nl and n2 are the numbers of repeated eigenvalues in (G,,). But (3) 
is the condition of maximal little groups of SU(N)- irreps ,  ~1 

SU(n , )  x SU(n2) c S U ( N )  (4) 

because an n~ + n2 = N structure of(~r,,) e {(G~)} demonstrates its invariance 
with respect to SU(n~) x SU(n2) as its maximal little group (m.l.g.). Usually 
for a group G (not necessarily unitary), a G-invariant polynomial like (1) 
can be considered as a function of (ni) partitions of its dimension N, 

v(r ocgf,(ni) (5) 
l 

and the extremalization of (5) requires those partitions so that their rep- 
resentations (q~r,,) may acquire maximal little groups (see also Michel, 1979). 
Moreover, the extremalization of (5) requires then also the maximalization 
of little groups, i.e., maximal little groups n 1 + n 2 = N. We show this explicitly 
for the mentioned cases (see footnote 10). We note that the aim of this 
paper is to show that there exist well-defined potentials suitable to producing 
derived channels of SSB, i.e., with m.l.g, as the rest symmetry. But of course 
one can construct a potential that gives rise to other SSB channels. 

1~ discuss the adjoint and tensor representations. The generalization to the case of vector 
representation is straightforward. 

n l n  the case of the adjoint representation the left side of (4) has an additional U(1) factor, 
but without any influence on the proposed procedure. 
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4. THE ADJOINT REPRESENTATION OF S U ( N )  

As mentioned, the minimum of potential (1) depends on the extrema 
of Tr(~4). First we show that this extrema happens for just two different 
eigenvalues of the adjoint representation. 

Lemma.  In the case of adjoint representation, the extremum of T r ( ~ )  
occurs for the smallest possible number of eigenvalues (obeys the traceless- 
hess condition): two. 

Equivalently the extrema of Tr(~4 ) are related to the m.l.g, of (r 

Proof  Let us have three different eigenvalues; then 
3 3 3 

T r ( ~ )  = Y~ ni a4, ~ n i : iV, Y~ rlia i = 0  (6) 
i = 1  i ~ l  i = 1  

From (6) we have 

Now the extremum of (7) occurs for either 
2 

n 3 = 0 ,  ~ njaj=O 
j = l  

o r  

(j~ ~JaJ) ~ 
(n3) 3 (7) 

n3 = N - 1, n2 = 1, nl = 0 (minimum) (9) 

in other words, for N = nl + n2. 
I t  is proved that the interesting extrema of Tr(q~ 4) occur if only two 

different eigenvalues exist: 

nl +/'/2 = N (10) 

and this means that the little groups of (~r) as mentioned above are maximal 
little groups (see footnote 11): 

S U ( n O x S U ( n 2 )  (x  U(1)) [] 

Thus, it is shown that the minimum of the potential for the adjoint 
representation happens for nl + n2 = N and thereby for eigenvalues with 
maximal little groups [see singlet criterion and Michel's (1979) conjecture]J 2 

12The adjoint representation of  SU(N) has just one sirlglet only with respect to SU(n 0 x 
SU(n2) • U(1) maximal little groups, i.e., (n~ + n 2 = N)  

SU(N) = SU(n O• SU(n2) x U(1) 

(in dimension) 

( N 2 -  1) = (1, 1) + 2 (a,b) 
a = l  

a C - b = l  

(maximum) (8) 
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One can show much more, that the extrema of such a Tr(~4), and 
thereby the related potential minima, coincide directly with the extrema of 
the maximal little groups. 13 

For a fixed eigenvalue of ((~r,,); nl -> n2, lal[ = 1) we have 

Tr(q 4,,) = 4 4 nlal+n2a2, nlal+n2a2=O (11) 

and then 

Tr(~4 ) = nla 4[ a + (nl/ n2) 3] (12) 

The extremum of (12) occurs for the extremum of (nl/n2). So the extrema 
of Yr(~4,.) are 

4 f maximum, n l / n 2 = N - l o ( n 2 = l )  
Tr(q~r )]  . . (13) 

" /min imum,  nl/n2<-N-[N/2]/[N/2]'~-~(n2=[N/2]) 

On the other hand, as mentioned before, the minimum of potential (1) 
depends on the minimum of Tr(qr for (+3') and on the maximum of Tr(r  4) 
for the ( -3 ' ) .  Thus, the stable minimum of the potential occurs (nl + n2 = N):  

+3"~ n2=[ N/2] (14) 
Vmin((~grn)) = t - -3 '  ~ 1"12 = 1 

This means that the exact directions of SSB with adjoint representation for 
potential (1) are 

S U ( N ) ~ S U ( [ N / 2 ] ) • 2 1 5  U(1), +3' 
(15) 

SU(N)--> S U ( N -  1) • U(1), - 3 '  

5. GENERAL CASES 

Now, if we choose a, /3, and 3' as variable parameters [for example, 
if/3 and 3' increase with respect to a, or if we introduce a cubic term with 
a variable parameter  A > 0, i.e., V:---[(1)+Tr(q~3r) �9 A], then it is obvious 
that the minimum of such a potential can vary between the discussed extrema 
of (15). Note that for the case ( -3 ' )  the minimum of the new potential 
depends as mentioned on the maximum of Tr(~4), so the variations of  other 
parameters with respect to 3' have n o  influence on this minimum, because 
the mentioned variations can be relatively limited by minimality condi- 
tions. 14 But in the case of (+3') the minimum of the potential cannot be 
reached by the minimum of Tr(q~ 4) (as in the case of  A = 0), because the 
most minimal potential could arise here if the positive terms, such as 
+3'Tr(q~ 4) [or + h  Tr(q93r)] decrease and the negative terms, such as 

13The extrema of  maximal little groups  means the extrema of  the number  of  group generators.  
14I.e., OV(q~i)/Oq~i = 0 and 02V(~i)/O~iO~j > 0 and (3') can be chosen relatively large. 
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Table I. Variation of the Minima of the Potential with (+y)  with Respect to the Value of n2 

+A -A 

[Tr(t#3,), Tr(q~4,,)lmin ~ ((n)~i~; n z = [N/2]) [Tr(~a,,)Jmi, ~ ((n)mi~; nz = [N/2]) 

[Tr(~o~,,)]~x ~ ((n)~• n 2 = 1) [Tr(~3~,,), Tr(~2,,)]m~• ~ ((n)m~x; n2 = 1) 

V(~0)=(1)+A Tr(~3); n = nffn 2. 

- a  Tr(~0 2) [or  - A  Tr(~3r)] increase.  On the o ther  hand ,  all of  these terms 
al ter  as funct ions  o f  (nffn2). So the m i n i m u m  of  the poten t ia l  indica tes  for 
some terms increas ing and  for  others  decreas ing  (nffn2), but  because  of  
var iable  pa rame te r s  these var ia t ions  can be m a n a g e d  th rough  the relat ive 
choice  o f  A/ay. 

Table  I gives the var ia t ion  of  the min ima  o f  the po ten t ia l  with ( + y )  
with respect  to the  value  o f  n2. So the SSB di rec t ions  change  for increas ing  
+A relat ive to a and  7, f rom 

S U ( N ) ~ S U ( [ N / 2 ] ) • 2 1 5  U(1) (16a) 

to 

SU(N)-*  S U ( N - 1 ) •  U(1) (16b) 

6. T H E  T E N S O R  R E P R E S E N T A T I O N  O F  SU(N)  

We use (1) and  the s t anda rd  form of  mat r ix  r ep resen ta t ion  for  bo th  
symmet r ic  or  an t i symmet r i c  tensors ,  15 because  these are t r ans fo rmab le  to 
the genera l  forms o f  t ensor  representa t ions .  In t roduc ing  an N • N sym- 
metr ic  (s) or  an t i symmet r i c  (as) s t anda rd  mat r ix  with p a r a m e t e r  ( C )  as the 
tensor  r ep resen ta t ion  for  (r) ,  then one has (see A p p e n d i x )  ~6 

Tr( 4 ) = n l C 4 :  /1--< n(s)-< N, nl :n(s)  (17) 
L 2<-n(a~) <-[N/2], nl: n(,~) 

But C2oc 1/n, and  so we have 

Tr (~  4) ~ 1 /n t  (18) 

~SWe discuss the usual case of second-rank tensors. 
16See the Appendix. In the case of tensors the n z in (nffn2) refers to the number of elements 

in diagonal or block-diagonal parts with (C = 0), but we are finally interested only in the 
C # 0 part and thereby in the variation of (n 0. 
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Now, as mentioned in Section 1, the minimum of potential the (1) requires 
extrema of Tr(q~4), so we have 

{[ V(~Or)]min ~ [Tr(~4)]min, + T} 

~" n~s) = N ,  n: = 0 
--(hi)max: [V(~r) ]min-- [n( . s )=[N/2] ,  nz=0 ,1  

(19) 
{[ V(@r)]min ~ [Tr(~4)] . . . .  --'Y} 

~(n l )min:  [ V(~r)]min ~ In(s) ? 1' nz = N - I  
L n(as) = 2, rt 2 = N - 2 

Thus the SSB directions in these cases are 

( , f S U ( N ) - ~ O ( N ) ,  +7 
r(~)2]SU(N)~SU(N-1), - y  

(20) 
, fSU(N)~ [| Sp(Z[N/2]) ,  + y  

r("~))].SU(N) ~ SU(2) x SU(N - 2 ) ,  -3/ 

It is shown that the minimum of the potential requires extrema of Tr(~p~), 
i.e., N = n~ + nz, and thereby they are related to the maximal little groups 
of the introduced representation (r), and this has been done without per- 
forming the usual minimalization procedure. 

7. R E M A R K S  

The method used above is general (it requires no explicit minimaliz- 
ation) and coincides with the results of the usual minimalization method. 
On the other hand, the minimalization method without a criterion for 
invariance of the minimizing representation with respect to the unbroken 
subgroups 17 can result in unproved statements. 18 The interesting feature of 
this method, namely investigating the leading term, is that it clearly demon- 
strates the relation between the minima of the potential polynomial and 
the maxima of little groups. Furthermore, it has the advantage that it can 
be generalized to other kinds of groups. 

Finally, we comment on the remark of Slansky (1981) about the little 
groups that occur as unbroken groups in SSB, such as SU(3) ~ U(1) x U(1) 
with an adjoint representation if we use the partial potential 

V(r = - a  Tr(r  2) +/3 [Tr(r 2 

17For example, singlet criterion or invariance relations. 
18See Li (1971) and Billoire and Morel (1981) for the case of antisymmetric tensor representation 

(see also Ghaboussi, 1982). 
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Here the situation is rather different from the general case that we discussed, 
because the magnitude of the potential depends, apart from parameters,  
only on Tr(p2). Thus, if we look at the eigenvalue conditions (7)-(9), then 
because the minimum of the potential depends on one hand on the minimum 
of + f l [ T r ( q ~ z r ) ]  2 o r  T r ( ~ r )  2, then with respect to (7)-(9), we must have n3 = 2. 
On the other hand, it depends on the maximum of -o~ Tr(q~), requiring 
n 3 = 0. Thus, for a suitable ~//3 it is plausible that one can have a compromise 
between n3 = 0 and n3 = 2,  namely n3 = 1 or n~ = n2 = n3 = 1. This gives the 
possibility of  an adjoint representation of SU(3) with three different eigen- 
values, which has a diagonal U(1 )x  U(1) little group; but it is not the 
stable minimum (against radiative corrections), because if we choose the 
original possibility (n3 = 0 or n3 = 2, i.e., n~+ n 2 = 3), then the extrema of 
Tr(~o 2) = n~a2(1 +n2/n~) yield in both cases (maximum or minimum) the 
same result, namely 

(n~)  rnax : n 2n~l =-- N - l - 2 1  

=2 ,  
n2 [ N / 2 ]  

n l + n 2 = 3  

and this is the stable minimum (against the radiative corrections). The SSB 
is 

SU(3) -~ SU(2) x U(1) 

This is in agreement with our results for the more general potential (1). 

A P P E N D I X  

The standard symmetric or antisymmetric matrices introduced in Sec- 
tion 3 are 

nl 

0 (s) 

I o } 
[o nl  

0 
~176176 

the V(1) can be written as 

V ( q~ r ) = - o z n l  C 2 + [3n2 C 4 4- Tn I C 4 

The extremalization relation between C and n is then obtained by 

OV(q~r) O, C2 - o~ 1 C2 1 
OC 2 2~ n l •  y / ~ '  nl 
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